高力ボルトによる異形鋼管フランジ継手の耐力および曲げ剛性の評価 その3

曲げ実験・実験計画

フランジ継手	高力ボルト	耐力	正会員	○笠原	康弘*	同	深澤	協三**
曲げ剛性	崩壊機構	加力実験	同	清水	紀花***	同	天野	一弥*
						同	中野	達也****

1.はじめに

筆者らは,角形鋼管柱と円形鋼管杭を直接高力ボルト で接合する柱杭接合構法の継手部の耐力および曲げ剛性 を,降伏線理論および FEM 解析から評価する方法を既報¹⁾ で提示した。

本報では,既報¹⁾で検討した柱杭接合部を含む角形鋼管 柱と円形鋼管杭で構成される試験体を対象に曲げ実験を 行った。その3では実験計画および破壊性状を報告する。 2.実験計画

2.1. 試験体計画

試験体の形状および寸法を図1に,試験体計画を表1 にそれぞれ示す。試験体は支持スパン 3,000mm の単純梁 で,試験体中央部が高力ボルトによるフランジ継手となっている。

試験体数は合計4体で、実験変数は①フランジプレート板厚、②継手部の偏心である。フランジプレート板厚は t=16,32,50mm の3水準とする。継手部の偏心は、本構法では杭の打設位置誤差により生じる柱と杭の芯ずれをフランジ継手部で処理する方法を採用しているため、フランジ継手部の偏心による影響の検討を目的とするものである。フランジプレート板厚 t=32mm の試験体について、

本構法における柱と杭の芯ずれの最大許容値である 20mm 偏心させた試験体としている。

柱および杭の鋼管は既報¹¹と同じく,柱に角形鋼管ロ-250×250×12(BCR295),杭に円形鋼管 Ø 267.4×19(STK490) を用いる。継手部は,柱側フランジプレートはØ 510mm, 杭側フランジプレートはØ 640mm で,材質は SN490C を 用いる。高力ボルトには F10T, 8-M22 を用いる。高力ボ ルトの締め付けはナット回転法により行う。

柱・杭鋼管およびフランジプレートの素材試験結果を 表2に示す。

2.2.実験方法

加力装置を図2に示す。試験体を単純支持し,2点集 中荷重を正負繰り返しで載荷する。載荷は,第1サイク ルが試験体純曲げ区間の曲げモーメント *M*=50kNm (弾性 範囲内加力),第2サイクルが *R*=2% (*R*:試験体中央部た わみを支持スパンの半分の長さで除したもの),第3サイ クルが *R*=4%で,各サイクルとも繰り返し回数は2回とす る。第3サイクル終了後には正側(試験体下面引張側) 単調載荷を行う。

測定装置を図3に示す。測定項目は、①試験体中央部 および加力点位置でのたわみ、②柱杭接合部の回転角θで ある。柱杭接合部の回転角θは、図3中に示す通り、柱杭 接合部フランジプレートから約30mm柱・杭鋼管側に寄っ

表1 試験体計画

試験体 No.	トッププレート・ ベースプレート (φ640・φ510) (SN490C)	鋼管杭 (STK490)	鋼管柱 (BCR295)	高力ボルト	偏心		
1	t=32				なし		
2	<i>t</i> =16	4067 Av 10		H. T. B 8-M22	なし		
3	t=50	$\psi 201.4 \times 19$	□-250 × 250 × 12	(F10T)	なし		
4	t=32			1	20mm		

表 2 素材試験結果

部材	鋼種	t (mm)	σ_y (N/mm²)	σ_u (N/mm²)
円形鋼管杭	STK490	19	529.6	528.6
角形鋼管柱	BCR295	12	366. 2	428.6
· · · ·		16	364. 7	512.0
ペースフレート トッププレート	SN490C	32	222. 0	499. 5
		50	345. 1	506.5

Evaluation on the strength and bending stiffness of the flange bolted joint between different shape tubes Part3 Bending test and Experimental plan

KASAHARA Yasuhiro, et al.

た位置での柱-杭間相対変位から、30mm 区間の柱・杭鋼 管の軸変形を引いて求めた柱杭接合部の離間を変位計の 配置間隔で除して求める。柱杭接合部の回転角 θ を求める 計算式を図3中に示す。

3. 破壊性状

各試験体の最大耐力および破壊形式を表3および写真 1に示す。試験体 No.1 は M=366.1kNm・R=3.3%で,写真 1に示す通り、高力ボルトの破断で最大耐力に達してい る。

試験体 No.2 では、高力ボルトは破断せず、単調載荷の M=201.1kNm・R=5.4%が最大耐力である。試験体 No.2 は フランジプレートの板曲げ変形が顕著であり,写真1中 に示す通り、フランジプレートと鋼管の溶接部に延性亀 裂が発生している。

試験体 No.3 は、写真1に示す通り、試験体 No.1 と同様 に高力ボルトの破断で最大耐力に達している。最大耐力 は*M*=355.5kNmで、試験体 No.1 の 0.97 倍であり、最大耐 力時の変形はR=2.2%で、試験体No.1の0.67倍である。試 験体 No.1 と比較すると、最大耐力はほぼ同じでありなが ら板厚の増加により最大耐力時変形が小さくなっている。

試験体 No.4 は、写真1に示す通り、試験体 No.1 と同様 に高力ボルトの破断で最大耐力に達している。最大耐力 はM=344.3kNmで, 試験体 No.1 の 0.94 倍である。最大耐 力時の変形は R=-2.4%で、試験体 No.1 とは異なり、負加 力時に高力ボルトが破断した。

4.まとめ

本報では実験計画を示した。また、破壊性状について 以下が明らかとなった。

1) 接合部フランジプレート t=32,50mm の試験体では,高 力ボルトの破断により破壊に至った。

2) 接合部フランジプレート t=16mm の試験体では, フラ ンジプレート板曲げにより破壊に至った。

3) 柱と杭を偏心させた試験体は、破壊モードは偏心の無 い試験体と同じであったが、高力ボルトの破断が負加力 時に発生した。

参考文献

1) 笠原康弘, 中野達也, 天野一弥, 磯田充樹, 深澤協三: 高力ボルトによ る異形鋼管フランジ継手の耐力および曲げ剛性の評価(その1~その 2), 日本建築学会大会学術講演梗概集, 構造Ⅲ, pp. 831-834, 2020.9

表3	最大耐力・	・破壊形式
100		PX 7X 11

=+=+++	最大耐力				
武职1本 No.	<i>M</i> (kN⋅m)	/No. 1	R (%)	/No. 1	破壊形式
1	366.1	-	3.3	-	高力ボルト破断
2	201.1	0.55	5.4	1.64	フランジプレート曲げ変形
3	355.5	0.97	2.2	0.67	高力ボルト破断
4	344.3	0.94	-2.4		高力ボルト破断

図2 加力装置

写真1 破壊性状

- * 株式会社 三誠
- ** 日本建設業経営協会 中央技術研究所
- 東京電機大学大学院
- 宇都宮大学 准教授 博士(工学) ****
- SANSEI INC. **
 - JARGC Central Research Institute for Construction Technology
- *** Graduate school of Tokyo Denki University
 - Associate Prof, Utsunomiya University, Dr. Eng.

*